On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming
نویسندگان
چکیده
We analyze two popular semidefinite programming relaxations for quadratically constrained quadratic programs with matrix variables. These relaxations are based on vector lifting and on matrix lifting; they are of different size and expense. We prove, under mild assumptions, that these two relaxations provide equivalent bounds. Thus, our results provide a theoretical guideline for how to choose a less expensive semidefinite programming relaxation and still obtain a strong bound. The main technique used to show the equivalence and that allows for the simplified constraints is the recognition of a class of nonchordal sparse patterns that admit a smaller representation of the positive semidefinite constraint.
منابع مشابه
Linear Programming Relaxations of Quadratically Constrained Quadratic Programs
We investigate the use of linear programming tools for solving semidefinite programming relaxations of quadratically constrained quadratic problems. Classes of valid linear inequalities are presented, including sparse PSD cuts, and principal minors PSD cuts. Computational results based on instances from the literature are presented.
متن کاملSecond-Order Cone Relaxations for Binary Quadratic Polynomial Programs
Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, secondorder cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, w...
متن کاملConvergent LMI relaxations for nonconvex quadratic programs
We consider the general nonconvex quadratic programming problem and provide a series of convex positive semidefinite programs (or LMI relaxations) whose sequence of optimal values is monotone and converges to the optimal value of the original problem. It improves and includes as a special case the well-known Shor’s LMI formulation. Often, the optimal value is obtained at some particular early r...
متن کاملSpeeDP: A new algorithm to compute the SDP relaxations of Max-Cut for very large graphs
We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained {−1, 1} quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a ne...
متن کاملSemidefinite relaxations of the quadratic assignment problem in a Lagrangian framework
In this paper, we consider partial Lagrangian relaxations of continuous quadratic formulations of the Quadratic Assignment Problem (QAP) where the assignment constraints are not relaxed. These relaxations are a theoretical limit for semidefinite relaxations of the QAP using any linearized quadratic equalities made from the assignment constraints. Using this framework, we survey and compare stan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Oper. Res.
دوره 36 شماره
صفحات -
تاریخ انتشار 2011